Multivariate Texture Discrimination Based on Geodesics to Class Centroids on a Generalized Gaussian Manifold
نویسندگان
چکیده
A texture discrimination scheme is proposed wherein probability distributions are deployed on a probabilistic manifold for modeling the wavelet statistics of images. We consider the Rao geodesic distance (GD) to the class centroid for texture discrimination in various classification experiments. We compare the performance of GD to class centroid with the Euclidean distance in a similar context, both in terms of accuracy and computational complexity. Also, we compare our proposed classification scheme with the k-nearest neighbor algorithm. Univariate and multivariate Gaussian and Laplace distributions, as well as generalized Gaussian distributions with variable shape parameter are each evaluated as a statistical model for the wavelet coefficients. The GD to the centroid outperforms the Euclidean distance and yields superior discrimination compared to the k-nearest neighbor approach.
منابع مشابه
Color Texture Discrimination Using the Principal Geodesic Distance on a Multivariate Generalized Gaussian Manifold
We present a new texture discrimination method for textured color images in the wavelet domain. In each wavelet subband, the correlation between the color bands is modeled by a multivariate generalized Gaussian distribution with fixed shape parameter (Gaussian, Laplacian). On the corresponding Riemannian manifold, the shape of texture clusters is characterized by means of principal geodesic ana...
متن کاملOn some generalized recurrent manifolds
The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds, called, super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [A.A. Shaikh and A. Patra, On a generalized class of recurrent manifolds, Arch. Math. (Brno) 46 (2010) 71--78.] and weakly generalized recurrent manifolds ...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملColor Texture Classification Using Rao Distance between Multivariate Copula Based Models
This paper presents a new similarity measure based on Rao distance for color texture classification or retrieval. Textures are characterized by a joint model of complex wavelet coefficients. This model is based on a Gaussian Copula in order to consider the dependency between color components. Then, a closed form of Rao distance is computed to measure the difference between two Gaussian Copula b...
متن کامل